Exact Sequences of Fibrations of Crossed Complexes, Homotopy Classification of Maps, and Nonabelian Extensions of Groups
نویسنده
چکیده
The classifying space of a crossed complex generalises the construction of Eilenberg-Mac Lane spaces. We show how the theory of fibrations of crossed complexes allows the analysis of homotopy classes of maps from a free crossed complex to such a classifying space. This gives results on the homotopy classification of maps from a CW -complex to the classifying space of a crossed module and also, more generally, of a crossed complex whose homotopy groups vanish in dimensions between 1 and n. The results are analogous to those for the obstruction to an abstract kernel in group extension theory.
منابع مشابه
A ug 1 99 8 Spaces of maps into classifying spaces for equivariant crossed complexes , II : The general topological group case
Spaces of maps into classifying spaces for equivariant crossed complexes, II: The general topological group case. Abstract The results of a previous paper [3] on the equivariant homotopy theory of crossed complexes are generalised from the case of a discrete group to general topological groups. The principal new ingredient necessary for this is an analysis of homotopy coherence theory for cross...
متن کاملGrothendieck fibrations and classifying spaces
Grothendieck fibrations have played an important role in homotopy theory. Among others, theywereused byThomason to describehomotopy colimits of small categories and byQuillen to derive long exact sequences of higher K-theory groups. We construct simplicial objects, namely the fibred and the cleaved nerve, to characterize the homotopy type of a Grothendieck fibration by using the additional stru...
متن کاملSpaces of Maps into Classifying Spaces for Equivariant Crossed Complexes, II: The General Topological Group Case
The results of a previous paper on the equivariant homotopy theory of crossed complexes are generalised from the case of a discrete group to general topological groups. The principal new ingredient necessary for this is an analysis of homotopy coherence theory for crossed complexes, using detailed results on the appropriate Eilenberg–Zilber theory, and of its relation to simplicial homotopy coh...
متن کاملSpaces with Finitely Many Non-trivial Homotopy Groups
It is well known that the homotopy category of connected CW-complexes X whose homotopy groups n;(X) are trivial for i> 1 is equivalent to the category of groups. One of the objects of this paper is to prove a similar equivalence for the connected CW-complexes X whose homotopy groups are trivial for i > n + 1 (where n is a fixed non-negative integer). For n = 1 the notion of crossed module inven...
متن کاملREPRESENTATION THEORY IN HOMOTOPY AND THE EHP SEQUENCES FOR (p− 1)-CELL COMPLEXES
For spaces localized at 2, the classical EHP fibrations [1, 13] ΩS S ΩS ΩS play a crucial role for the computations of the homotopy groups of the spheres [16, 25]. The EHP-fibrations for (p− 1)-cell complexes for p > 2 are given in this article. These fibrations can be regarded as the odd prime analogue of the classical EHP-fibrations by considering the spheres as 1-cell complexes for p = 2. So...
متن کامل